An Egyptian fraction is a finite sum of distinct unit fractions, such as
That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number a/b; for instance the Egyptian fraction above sums to 43/48. Every positive rational number can be represented by an Egyptian fraction. Sums of this type, and similar sums also including 2/3 and 3/4 as summands, were used as a serious notation for rational numbers by the ancient Egyptians, and continued to be used by other civilizations into medieval times. In modern mathematical notation, Egyptian fractions have been superseded by vulgar fractions and decimal notation. However, Egyptian fractions continue to be an object of study in modern number theory and recreational mathematics, as well as in modern historical studies of ancient mathematics.
Beyond their historical use, Egyptian fractions have some practical advantages over other representations of fractional numbers. For instance, Egyptian fractions can help in dividing a number of objects into equal shares (Knott). For example, if one wants to divide 5 pizzas equally among 8 diners, the Egyptian fraction
means that each diner gets half a pizza plus another eighth of a pizza, e.g. by splitting 4 pizzas into 8 halves, and the remaining pizza into 8 eighths.
Similarly, although one could divide 13 pizzas among 12 diners by giving each diner one pizza and splitting the remaining pizza into 12 parts (perhaps destroying it), one could note that
and split 6 pizzas into halves, 4 into thirds and the remaining 3 into quarters, and then give each diner one half, one third and one quarter.
Egyptian fraction notation was developed in the Middle Kingdom of Egypt, altering the Old Kingdom's Eye of Horus numeration system. Five early texts in which Egyptian fractions appear were the Egyptian Mathematical Leather Roll, the Moscow Mathematical Papyrus, the Reisner Papyrus, the Kahun Papyrus and the Akhmim Wooden Tablet. A later text, the Rhind Mathematical Papyrus, introduced improved ways of writing Egyptian fractions. The Rhind papyrus was written by Ahmes and dates from the Second Intermediate Period; it includes a table of Egyptian fraction expansions for rational numbers 2/n, as well as 84 word problems. Solutions to each problem were written out in scribal shorthand, with the final answers of all 84 problems being expressed in Egyptian fraction notation. 2/n tables similar to the one on the Rhind papyrus also appear on some of the other texts. However, as the Kahun Papyrus shows, vulgar fractions were also used by scribes within their calculations.
To write the unit fractions used in their Egyptian fraction notation, in hieroglyph script, the Egyptians placed the hieroglyph

(er, "[one] among" or possibly re, mouth) above a number to represent the reciprocal of that number. Similarly in hieratic script they drew a line over the letter representing the number. For example:


The Egyptians had special symbols for 1/2, 2/3, and 3/4 that were used to reduce the size of numbers greater than 1/2 when such numbers were converted to an Egyptian fraction series. The remaining number after subtracting one of these special fractions was written as a sum of distinct unit fractions according to the usual Egyptian fraction notation.



The Egyptians also used an alternative notation modified from the Old Kingdom to denote a special set of fractions of the form 1/2^{k} (for k = 1, 2, ..., 6) and sums of these numbers, which are necessarily dyadic rational numbers. These have been called "HorusEye fractions" after a theory (now discredited)^{[1]} that they were based on the parts of the Eye of Horus symbol. They were used in the Middle Kingdom in conjunction with the later notation for Egyptian fractions to subdivide a hekat, the primary ancient Egyptian volume measure for grain, bread, and other small quantities of volume, as described in the Akhmim Wooden Tablet. If any remainder was left after expressing a quantity in Eye of Horus fractions of a hekat, the remainder was written using the usual Egyptian fraction notation as multiples of a ro, a unit equal to 1/320 of a hekat.
Modern historians of mathematics have studied the Rhind papyrus and other ancient sources in an attempt to discover the methods the Egyptians used in calculating with Egyptian fractions. In particular, study in this area has concentrated on understanding the tables of expansions for numbers of the form 2/n in the Rhind papyrus. Although these expansions can generally be described as algebraic identities, the methods used by the Egyptians may not correspond directly to these identities. Additionally, the expansions in the table do not match any single identity; rather, different identities match the expansions for prime and for composite denominators, and more than one identity fits the numbers of each type:
Egyptian fraction notation continued to be used in Greek times and into the Middle Ages,^{[7]} despite complaints as early as Ptolemy's Almagest about the clumsiness of the notation compared to alternatives such as the Babylonian base60 notation. An important text of medieval mathematics, the Liber Abaci (1202) of Leonardo of Pisa (more commonly known as Fibonacci), provides some insight into the uses of Egyptian fractions in the Middle Ages, and introduces topics that continue to be important in modern mathematical study of these series.
The primary subject of the Liber Abaci is calculations involving decimal and vulgar fraction notation, which eventually replaced Egyptian fractions. Fibonacci himself used a complex notation for fractions involving a combination of a mixed radix notation with sums of fractions. Many of the calculations throughout Fibonacci's book involve numbers represented as Egyptian fractions, and one section of this book^{[8]} provides a list of methods for conversion of vulgar fractions to Egyptian fractions. If the number is not already a unit fraction, the first method in this list is to attempt to split the numerator into a sum of divisors of the denominator; this is possible whenever the denominator is a practical number, and Liber Abaci includes tables of expansions of this type for the practical numbers 6, 8, 12, 20, 24, 60, and 100.
The next several methods involve algebraic identities such as For instance, Fibonacci represents the fraction by splitting the numerator into a sum of two numbers, each of which divides one plus the denominator: Fibonacci applies the algebraic identity above to each these two parts, producing the expansion Fibonacci describes similar methods for denominators that are two or three less than a number with many factors.
In the rare case that these other methods all fail, Fibonacci suggests a greedy algorithm for computing Egyptian fractions, in which one repeatedly chooses the unit fraction with the smallest denominator that is no larger than the remaining fraction to be expanded: that is, in more modern notation, we replace a fraction x/y by the expansion
where represents the ceiling function; since (y) mod x < x, this method yields a finite expansion.
Fibonacci suggests switching to another method after the first such expansion, but he also gives examples in which this greedy expansion was iterated until a complete Egyptian fraction expansion was constructed: and
Compared to ancient Egyptian expansions or to more modern methods, this method may produce expansions that are quite long, with large denominators, and Fibonacci himself noted the awkwardness of the expansions produced by this method. For instance, the greedy method expands
while other methods lead to the shorter expansion
Sylvester's sequence 2, 3, 7, 43, 1807, ... can be viewed as generated by an infinite greedy expansion of this type for the number one, where at each step we choose the denominator instead of , and sometimes Fibonacci's greedy algorithm is attributed to Sylvester.
After his description of the greedy algorithm, Fibonacci suggests yet another method, expanding a fraction by searching for a number c having many divisors, with , replacing by , and expanding as a sum of divisors of , similar to the method proposed by Hultsch and Bruins to explain some of the expansions in the Rhind papyrus.
Although Egyptian fractions are no longer used in most practical applications of mathematics, modern number theorists have continued to study many different problems related to them. These include problems of bounding the length or maximum denominator in Egyptian fraction representations, finding expansions of certain special forms or in which the denominators are all of some special type, the termination of various methods for Egyptian fraction expansion, and showing that expansions exist for any sufficiently dense set of sufficiently smooth numbers.
Some notable problems remain unsolved with regard to Egyptian fractions, despite considerable effort by mathematicians.
Guy (2004) describes these problems in more detail and lists numerous additional open problems.
Egyptian fractions provide a solution to the ropeburning timer puzzle, in which a given duration is to be measured by igniting nonuniform ropes which burn out after a set time, say, one hour. The time taken to fully burn a rope is linearly proportional to the number of flame fronts maintained on the rope. Any rational fraction of one hour can be timed by finding the equivalent Egyptian fraction expansion and sequentially burning ropes with the appropriate number of flame fronts for the fractions. The usual restriction that every fraction is different may be relaxed.^{[19]}
For example, to time 40 minutes (2/3 hour), we can decompose 2/3 into 1/2 + 1/6. First, a onehour rope is lit at both ends. When it burns out in 1/2 hour, another rope is lit at both ends and any two points in between, giving three segments, each with both ends burning. When any segment burns out, any point in a remaining segment is lit, splitting it into two segments, thus maintaining a total of six flame fronts. In theory, all segments burn out in 1/6 hour, giving a total of 2/3 hour as required.